Atmospheric Lensing and Oblateness Effects during an Extrasolar Planetary Transit

نویسندگان

  • Lam Hui
  • Sara Seager
چکیده

Future high-precision photometric measurements of transiting extrasolar planets promise to tell us much about the characteristics of these systems. We examine how atmospheric lensing and (projected) planet oblateness/ellipticity modify transit light curves. The large density gradients expected in planet atmospheres can offset the unfavorably large observer lens–to–source lens distance ratio and allow the existence of caustics. Under such conditions of strong lensing, which we quantify with an analytic expression, starlight from all points in the planet’s shadow is refracted into view, producing a characteristic slowing down of the dimming at ingress (vice versa for egress). A search over several parameters, such as the limb-darkening profile, the planet radius, the transit speed, and the transit geometry, cannot produce a nonlensed transit light curve that can mimic a lensed light curve. The fractional change in the diminution of starlight is approximately the ratio of atmospheric scale height to planet radius, expected to be 1% or less. The lensing signal varies strongly with wavelength—caustics are hidden at wave bands where absorption and scattering are strong. Planet oblateness induces an asymmetry to the transit light curve about the point of minimum flux, which varies with the planet orientation with respect to the direction of motion. The fractional asymmetry is at the level of 0.5% for a projected oblateness of 10%, independent of whether or not lensing is important. For favorable ratios of planet radius to stellar radius (i.e., gas giant planets), the above effects are potentially observable with future space-based missions. Such measurements could constrain the planet shape and its atmospheric scale height, density, and refractive coefficient, providing information on its rotation, temperature, and composition. We have examined a large range of planetary system parameter space including the planetary scale height and orbital distance. For HD 209458b, the only currently known transiting extrasolar planet, caustics are absent because of the very small lens-source separation (and a large scale height caused by a high temperature from the small separation). Its oblateness is also expected to be small because of the tidal locking of its rotation to orbital motion. Finally, we provide estimates of other variations to transit light curves that could be of comparable importance—including rings, satellites, stellar oscillations, star spots, and weather. Subject headings: gravitational lensing — planetary systems — stars: atmospheres

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : a st ro - p h / 01 03 32 9 v 1 2 1 M ar 2 00 1 Atmospheric Lensing and Oblateness Effects During an Extrasolar Planetary Transit

Future high precision photometric measurements of transiting extrasolar planets promise to tell us much about the characteristics of these systems. We examine how atmospheric lensing and (projected) planet oblateness/ellipticity modify transit light curves. The large density gradients expected in planet atmospheres can offset the unfavorably large observer-lens to source-lens distance ratio, an...

متن کامل

Measuring the Oblateness and Rotation of Transiting Extrasolar Giant Planets

We investigate the prospects for characterizing extrasolar giant planets by measuring planetary oblateness from transit photometry and inferring planetary rotational periods. The rotation rates of planets in the solar system vary widely, reflecting the planets’ diverse formational and evolutionary histories. A measured oblateness, assumed composition, and equation of state yields a rotation rat...

متن کامل

Constraining the Rotation Rate of Transiting Extrasolar Planets by Oblateness Measurements

The solar system gas giant planets are oblate due to their rapid rotation. A measurement of the planet’s projected oblateness would constrain the planet’s rotational period. Planets that are synchronously rotating with their orbital revolution will be rotating too slowly to be significantly oblate; these include planets with orbital semi-major axes ∼< 0.2 AU (for MP ∼ MJ and M∗ ∼ M ). Jupiter-l...

متن کامل

Spectroscopic Studies of Transiting Planetary Systems

As of December 2007, radial velocity measurements and planetary transit surveys for nearby stars have already identified more than 250 planets around other stars. These “extrasolar planets” opened a new field of astronomy in the past decade. The discovery of many extrasolar planets have revealed the existence of exotic planets such as “hot Jupiters” and “eccentric planets,” showing the diversit...

متن کامل

Using long-term transit timing to detect terrestrial planets

We propose that the presence of additional planets in extrasolar planetary systems can be detected by long-term transit timing studies. If a transiting planet is on an eccentric orbit then the presence of another planet causes a secular advance of the transiting planet’s pericenter over and above the effect of general relativity. Although this secular effect is impractical to detect over a smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002